Month 4: Unsupervised Learning Techniques

Month 4: Unsupervised Learning Techniques

Week 1: Clustering

  • Introduction to Clustering
  • K-Means Clustering
  • Hierarchical Clustering
  • Density-Based Clustering
  • Clustering Evaluation

Week 2: Dimensionality Reduction

  • Introduction to Dimensionality Reduction
  • Principal Component Analysis (PCA)
  • Singular Value Decomposition (SVD)
  • Linear Discriminant Analysis (LDA)
  • Applications of Dimensionality Reduction

Week 3: Independent Component Analysis (ICA)

  • Introduction to ICA
  • ICA for Blind Source Separation
  • Applications of ICA
  • Comparison with PCA

Week 4: t-SNE

  • Introduction to t-SNE
  • Dimensionality Reduction with t-SNE
  • t-SNE vs PCA
  • Applications of t-SNE